Monday, 2 July 2018

MTH101 TMA1-4 – Elementary Mathematics I TMA 4 QUESTIONS AND ANSWERS


MTH101 TMA1-4 – Elementary Mathematics I TMA 4 QUESTIONS AND ANSWERS
1 Any bunch of numbers is a _____ ,so long as the numbers come in pairs.
A. group
B. domain
C. axiom
D. relation  
2 A ___ is just a set of ordered pairs.
A. sets
B. functions
C. partition
D. relation  
3 Let N ={1,2,3,4,5,……….}, E = {2,4,6,…….}, F = {1,3,5,……..}. Then, {E,F} is a _____ of N.
A. functions
B. partition  
C. relation
D. sets
4 A relation is a _____ ordering,if it is reflexive,anti- symmetric and transitive.
A. partial  
B. complex
C. group
D. equal
5 A relation is a set of an ______ relation,if it is reflexive,transitive and symmetric.
A. simple
B. equal
C. balance
D. equivalence  
6 Solve for x and y: 3x + 4y = 9, 2x + 3y =8
A. x = 7.5, y = – 4. 5  
B. x = 7.0, y = – 4. 5
C. x = 4.5, y = – 7. 5
D. x = 7.5, y = – 4. 1
7 If A.x=
λx
λx
,where A=
∣∣∣∣211232−212∣∣∣∣
|22−2131122|
,determine the eigen values of the matrix A, and an eigen vector corresponding to each eigen value. If
λ=2
,what is b
A. {0,1,0}
B. {3,0,2}
C. {2,0,1}
D. {0,1,1}  
8 If A.x=
λx
,where A=
∣∣∣∣211232−212∣∣∣∣
,determine the eigen values of the matrix A, and an eigen vector corresponding to each eigen value. If
λ=4
,what is c
A. {2,3,0}
B. {-2,1,1}
C. {2,1,1}  
D. {3,2,6}
9 Solve the set of linear equations by the matrix method : a+3b+2c=3 , 2a-b-3c= -8, 5a+2b+c=9. Sove for c
A. 2  
B. 1
C. 5
D. 7
10 If A.x=
λx
,where A=
∣∣∣∣211232−212∣∣∣∣
,determine the eigen values of the matrix A, and an eigen vector corresponding to each eigen value. If
λ=1
,what is a
A. {-2,1,0}  
B. {3,5,2}
C. {1,0,0}
D. {2,1,4}
TMA: TMA2/MTH101
MTH101 – Elementary Mathematics I
1 Solve the set of linear equations by Guassian elimination method : a+2b+3c=5, 3a-b+2c=8, 4a-6b-4c=-2. Find c
A. 1
B. 5
C. 4  
D. 10
2 Solve the set of linear equations by the matrix method : a+3b+2c=3 , 2a-b-3c= -8, 5a+2b+c=9. Sove for b
A. 9
B. -3  
C. 5
D. -4
3 Solve the set of linear equations by Guassian elimination method : a+2b+3c=5, 3a-b+2c=8, 4a-6b-4c=-2. Find b
A. 4
B. -5
C. -3  
D. 5
4 Solve the set of linear equations by Guassian elimination method : x+2y+3z=5, 3x-y+2z=8, 4x-6y-4=-2. Find a
A. -1  
B. 4
C. 5
D. -11
5 Solve the set of linear equations by the matrix method : a+3b+2c=3 , 2a-b-3c= -8, 5a+2b+c=9. Sove for a
A. 2  
B. 4
C. 7
D. 3
6 For a relation R in A. if
(a,b)ϵRand(b,c)ϵR,itimpliesthat(a,c)ϵR
(a,b)ϵRand(b,c)ϵR,itimpliesthat(a,c)ϵR
, then R is a ______ relation.
A. transitive  
B. reflexive
C. symmentric
D. associative
7 For a relation R in A.
if(a,b)ϵRand(b,a)ϵR
if(a,b)ϵRand(b,a)ϵR
,it implies that a =b, then R is an ______ relation.
A. associative
B. anti- symmetric  
C. complex
D. transitive
8 If every element in a set is related to itself,the relation is said to be ________ relation.
A. reflexive  
B. uniform
C. proportional
D. complex
9 If R and S are relations on A. What is R and S.
A. RS  
RS
B. A is empty
C. R∩A
R∩A
D. S∩A
S∩A
10 What are the x-values called.
A. domain  
B. function
C. symmetric
D. set
TMA: TMA3/MTH101
1 What does
AB
or
BA
denotes Â…Â….
A. comparable  
B. subset
C. flexible
D. proper subset
2 What symbol do we use to denote a subset .
A.  
B.
C.
D.
3 The family of all the subset of any set S is called Â…Â…Â….. Set of S
A. subset
B.power set  
C. element
D. improper subset
4 What makes A = {1,2,4,5} and B = {2,3,6,7} not disjoint .
A. 9
B. 2  
C. 5
D. 7
5 If E = {x,y,z} and F = { r,s,t,}. What type of set is this called .
A. subset
B. disjoint  
C. element
D. relationship
6 Differentiate the following
(2×2−7)
(2×2−7)
A. x2
x2
B. 4
C. 2
D. 4x  
7 Find f(x) =
x7
x7
A. 6x
B. x6
C. 6×7
D. 7×6  
8 Find f(x) =
x3v
x3v
A. 3vx3v
3vx3v
B. 3nx
C. 3vx(3v−1)  
D. 3vx(3v−3)
9 Differentiate the following with respect to x : (3x + 4)
A. 3  
B. 3x
C. 4
D. x
10 Find f(x) =
(7×4−5×3)
A. 7×4−5×3
B. 28×3−15×2  
C. 28×2−15×2
D. 7×3−15×2
TMA: TMA4/MTH101
1 What does
AB
AB
or
BA
BA
denotes Â…Â….
A. flexible
B. subset
C. comparable  
D. proper subset
2 What symbol do we use to denote a subset .
A.
B.  
C.
D.
3 The family of all the subset of any set S is called Â…Â…Â….. Set of S
A. subset
B. power set  
C. element
D. improper subset
4 What makes A = {1,2,4,5} and B = {2,3,6,7} not disjoint .
A. 9
B. 4
C. 5
D. 2  
5 If E = {x,y,z} and F = { r,s,t,}. What type of set is this called .
A. subset
B. relationship
C. element
D. disjoint  
6 Differentiate the following
(2×2−7)
A. x2
B. 4
C. 2
D. 4x  
7 Find f(x) =
x7
A. 6x
B. x6
C. 6×7
D. 7×6  
8 Find f(x) =
x3v
x3v
A. 3vx3v
B. 3nx
C. 3vx(3v−1)  
D. 3vx(3v−3)
9 Differentiate the following with respect to x : (3x + 4)
A. x
B. 3x
C. 4
D. 3  
10 Find f(x) =
(7×4−5×3)
A. 7×4−5×3
B. 28×3−15×2  
C. 28×2−15×2
D. 7×3−15×2

1 comment: